JEUX COOPÉRATIFS ET NON-COOPÉRATIFS



THÉORIE DES JEUX ET DE LA DÉCISION

1. Représentatives

1.1. Forme extensive d'un jeu

1.2. Forme extensive d'une décision

1.3. Forme normale d'un jeu

1.3.1. Jeux répétitifs

1.1. Forme ensembliste d'un jeu

1.2. Forme graphique d'un jeu

2. Jeux coopératifs et non-coopératifs

2.1. Optimum de Pareto

2.2. Equilibre de Nash

2.3. Utilité espérée

2.3.1. Critère d'Hurwitz

2.3.2. Critère de Laplace

3. Jeux évolutionnaires

4. Equilibre de Cournot

5. Chaîne de Markov

Une première approche (sans faire usage des maths dans un premier temps) de cette attitude d'esprit (forme de jeu) est accessible à de jeunes enfants (sans qu'ils le sachent!).

exempleExemple:

Imaginons deux enfants, l'un et l'autre gourmands, en présence d'un gâteau homogène, parfaitement divisible (et très bon...). Si la maman fait deux parts, il y aura immanquablement des disputes, chacun trouvant plus grosse la part de l'autre. Le seul moyen (hors dictat) d'éviter toute dispute est pour la mère d'imposer la règle suivante : l'un des enfants effectue le partage, et l'autre choisit en premier sa part. Celui qui coupe ne peut pas raisonner en tenant compte de ses seules préférences, qui le pousseraient à se couper une grosse part. Il sait en effet que l'autre pourra choisir sa part. Si donc il coupe une part plus grosse que l'autre, il risque de la retrouver dans l'assiette du voisin. Il va donc s'efforcer de couper des parts aussi égales que possibles, à ses yeux. Ainsi, quel que soit le choix de l'autre, il ne s'estimera pas maltraité. C'est cette anticipation du choix d'un autre décideur qui constitue l'originalité de la théorie de la décision et de la coopération !

Définitions:

D1. La partie de la théorie des jeux qui s'occupe de la détermination des éléments socialement préférables (au niveau du groupe plutôt que de l'individu seul en d'autres termes) de l'ensemble des issues I est souvent dite "coopérative" ou "coalitionnelle". Elle nécessite que les différentes parties puissent communiquer entre elles et... qu'elles soient rationnelles.

D2. La partie dite, au contraire, "non coopérative" ou "stratégique" ne s''intéresse pas à la mise en oeuvre des solutions préconisées par la théorie des jeux coopératifs qui ont force de loi. Elle suppose que les différentes parties en communiquent pas entre elles ou ne sont pas rationnelles.

Cette distinction entre jeux coopératifs et jeux non-coopératifs prête souvent à confusion. Essayons de la dissiper pour partie. Tout d'abord, cette distinction ne signifie nullement que les comportements que nous concevons intuitivement comme "coopératifs", au sens où ils induisent une part de sacrifice de nos intérêts propres au profit d'un bien jugé supérieur, ne pourront apparaître que dans le cadre des jeux coopératifs, au contraire! Les jeux stratégiques se soucient beaucoup de l'apparition endogène de tels comportements. Inversement, les jeux coopératifs sont très attentifs au respect des intérêts des individus. C'est là d'ailleurs l'une des difficultés principales qu'il leur faut affronter : si sacrifice individuel pour le bien commun il doit y avoir, qui doit se sacrifier ? Et pourquoi tel individu plutôt qu'un autre ?

Une fois défini l'ensemble I unanimement considéré comme représentant toutes les issues possibles du problème que nous cherchons à résoudre, il nous faut déterminer  des critères qui permettent de sélectionner le "meilleur" état possible, compte tenu des appréciations diverses et contradictoires dont equation fait l'objet par les différents citoyens en présence.

Nous savons que cette appréciation se mesure au moyen de la fonction d'utilité equation  définie sur I et prenant ses valeurs dans equation. Ainsi, si le système que nous considérons comporte equation individus et si equation est l'issue sélectionnée, equation est la gain accordé par le joueur i à x.

Remarque: Si chaque individu avait le pouvoir d'imposer sa volonté aux autres (quitte, au besoin, à la faire passer pour la "volonté générale"), il choisirait tout simplement l'issue x qui maximise equation (c'est-à-dire son gain).

OPTIMUM DE PARETO

Un premier critère qui vient à l'esprit, et qui est dû au sociologue italien Vilfredo Pareto, est celui de l'optimalité qui porte son nom (à ne pas confondre avec la "loi de Pareto" concept complétement empirique en économie comme quoi la plupart des répartitions se font selon un rapport 20/80% - cf . chapitre de Techniques De Gestion).

Considérons deux issues x et y, appartenant toutes deux à I, et supposons que, pour chaque individu i, nous ayons la situation suivante:

equation   (33)

En d'autres termes, aucun individu ne serait à priori lésé si nous substituions à chacun l'état y à l'état x . Supposons de surcroît, qu'il existe au moins une personne j qui préfère strictement y à x tel que :

equation   (34)

Dans ces conditions, nous ne voyons plus vraiment ce qui devrait retenir le législateur de choisir y plutôt que x.

Défintion : Une issue i réalisable qui n'admet aucune "amélioration" est appelée un "optimum de Pareto" (O.P.) et est définie rigoureusement par :

equation   (35)

La "pareto-optimalité" est à comprendre comme une condition sine qua non, un "minimum minimorum", sans lequel le concept de solution d'un jeu coopératif que nous cherchons à élaborer devrait être automatiquement rejeté.

Remarque: Ce résultat forme rejoint donc ce que nous avions déjà écrit en début de chapitre. C'est--à-dire que si dans un jeu, un couple d'issues est telle qu'il est impossible d'améliorer le score de l'un des deux joueurs sans diminuer le score de l'autre, nous disons que ces issues sont "pareto-optimales" ou "pareto-efficientes".

ÉQUILIBRE DE NASH

Définition: "L'équilibre de Nash" (ou "équilibre" tout court) décrit une issue d'un jeu dans lequel aucun joueur n'a intérêt à modifier sa stratégie unilatéralement, compte tenu des stratégies des autres joueurs.

Remarque: Nous avons déjà vu de nombreux exemples avec des équilibres précédemment.

Soit un jeu à n joueurs, et equation une combinaison de choix stratégiques de ces n joueurs où equation est le meilleur choix stratégique du joueur i et avec equation, l'ensemble des stratégies praticables par le joueur i. Soit equation le gain du joueur i lorsque equation est sélectionné.

Une combinaison de choix stratégiques equationest un équilibre de Nash si et seulement si:

equation   (36)

pour tout equation dans equation et tout i.

Interprétation: aucun joueur ne peut bénéficier d'une déviation de equation, quelle que soit la stratégie qu'il choisisse dans son ensemble equation. Ainsi, aucun joueur n'a intérêt à dévier, et equation est un équilibre

Remarque: Il peut arriver qu'un optimum de Pareto se confonde à l'équilibre de Nash mais ce n'est pas toujours le cas (donc un équilibre de Nash n'est pas toujours un optimum de Pareto).

Définition: Quand la stratégie d'un joueur est la meilleure réponse face à toutes les stratégies possibles de ses rivaux, nous parlons alors de "stratégie dominante" equation (cette stratégie domine toutes les autres stratégies du joueur). L'équilibre de ce jeu est alors appelé "équilibre en stratégie dominante".

In extenso, une stratégie est "dominée" si elle procure au joueur des gains toujours inférieurs à ceux associés à au moins une autre de ses stratégies.

Remarque: Nous pouvons nous interroger si dans un jeu non-coopératif l'équilibre de Nash (s'il existe) n'est pas tel qu'il amène de toute façon à une coopération implicite ? Au fait, ce n'est pas le cas (et c'est un résultat très important) car comme nous verrons dans l'étude du fameux dilemne du prisonnier un jeu dont l'équilibre de Nash est assuré par des choix individualistes et rationnels tels qu'ils soient non coopératifs !!! Ce sera donc un exemple extrêmement important dans le cadre de l'économie de marché.

Méthode : Une manière de déterminer les équilibres d'un jeu consiste à éliminer en premier toutes les stratégies dominées puis à rechercher les équilibres dans le jeu ainsi réduit.

exempleExemple:

En éliminant les stratégies dominées (mêmes faiblement dominées) pour chacun des joueurs, nous tombons sur (6 , 4) qui est comme nous le voyons un équilibre de Nash (car c'est celle où aucun joueur n'a intérêt à changer de stratégie).

J1 / J2

S1

S2

S3

S1

5 , 2

4 , 4

6 , 4

S2

3 , 1

2 , 0

5 , 2

Tableau: 13  - Matrice avec équilibre de Nash

Le jeu suivant par contre, ne comporte pas d'équilibre de Nash. Effectivement, quelque soit le couple de stratégies envisagé, l'un des joueurs obtient toujours plus en modifiant son choix.

J1 / J2

S1

S2

S1

1 , 0

0 , 1

S2

0 , 1

1 , 0

Tableau: 14  - Matrice sans équilibre de Nash

Toutefois, pour le moment il apparaît pour le moins prématuré de prescrire aux joueurs le choix d'un équilibre; certes s'il est choisi, la situation a une certaine stabilité, mais il reste trois difficultés :

1. Nous ne sommes pas assurées de l'existance d'un couple de tactiques en équilibre (conjonction des tactiques prudentes)

2. Même en cas d'existence, nous ne sommes pas assuré de l'unicité d'un couple de tactiques en équilibre

3. Même en cas d'existence et d'unicité, nous pouvons préscrire un autre choix (!!!!)


page suivante : 2.3. Utilité espérée