Cours de démographie (dynamique de la population)



DYNAMIQUE DES POPULATIONS

1. Tables de mortalité et natalité (fonctions biométriques)

1.1. Renouvellement de la population

2. Modèles des populations

2.1. Modèle exponentiel

2.2. Modèle logistique déterministe (Verlhust)

2.3. Modèle logistique chaotique

2.3.1. Diagramme de Feigenbaum

2.4. Loi de Malthus

2.5. Modèle de Leslie

3. Propagation des épidémies

4. Modèle proies-prédateurs (de Lotka-Volterra)

5. Modèle de Hardy-Weinberg

6. Taux de croissance avec la température

Einstein, à la fin de sa vie, avait coutume d'évoquer les trois explosions qui allaient sous peu menacer l'humanité: l'explosion des bombes nucléaires, l'explosion de nos savoirs, l'explosion de l'effectif des hommes. Le rôle des scientifiques à ce niveau n'est pas seulement d'améliorer leur savoir, mais de la partager et surtout de diffuser la conscience qu'ils ont acquise des conséquences qu'ils savent discerner. Einstein avait à coeur de jouer ce rôle. Au-delà des péripéties immédiates, il savait voir les évolutions à long terme, Par ces évolutions, celle du nombre des hommes lui apparaissait à l'évidence comme grosse des plus grands dangers. Aujourd'hui, en début de ces années 2000, nous pouvons constater sa perspicacité. L'humanité est réellement prise à la gorge par l'accroissement de son effectif ou de son maintient actuel sans la forcer à la baisse.

Pour introduire les mathématiques sociales, il nous faut d'abord déterminer les caractéristiques qui décrivent la dynamique du nombre d'individus avant de formaliser les propriétés uniques qui les caractérisent.


TABLES DE MORTALITÉ ET NATALITÉ (FONCTION BIOMÉTRIQUES)

Nul ne sait ni le jour ni l'heure de sa mort. Cette évidence individuelle n'est plus pertinente si nous nous intéressons non à telle personne, mais à une collectivité assez nombreuse. Alors jouent les compensations entre ceux qui succombent à des accidents prématurées et ceux qui échappent quasi miraculeusement aux pires dangers. Nous pouvons alors décrire la façon dont est payé globalement le tribut à la mort en considérant un grand nombre d'enfants nés la même année et en précisant, grâce aux données de l'état civil, comment leur effectif diminue peu à peu pour un jour s'annuler.

Un tel ensemble de conscrits est appelé par les démographes une "cohorte". Considérons donc la cohorte des Français mâles nés en 1900. Chaque année nous pouvons, en regroupant les indications de l'état civil, calculer le nombre de ceux qui sont décédés dans la cohorte.

Représentons par equation le quotient du nombre des décès entre les anniversaires a et a+1 par l'effectif initial de la cohorte.

Remarque: Nous allons dans ce qui suit définir les bases des probabilités nécessaires au calcul actuariel. En effet, les mathématiques actuarielles réunissent le calcul financier et le calcul des probabilités. Le paiement d'un capital n'est plus certain et dépend par exemple de la survie d'une personne.

La suite des ces nombres contient la totalité de l'information nécessaire pour étudier la mortalité de cette cohorte.

Nous pouvons en déduire la proportion d'entre eux survivant à l'âge a:

equation   (1)

Nous pouvons également caractériser l'intensité de la mortalité à chaque âge en divisant le nombre des décès entre les âges a et a+1 par le nombre de survivants. Ce nombre est alors appelée le "quotient de mortalité":

equation   (2)

La liste âge par âge de ces trois paramètres d, S, et q est la "table de mortalité" de la cohorte étudiée. Le tableau ci-dessous en donne le résumé pour les âges multiples de 5.

Âge
a

Survivants
equation

Décès de l'âge a à a+5
equation

Probabilité des décès
equation

0

1

0.228

0.228

5

0.772

0.13

0.017

10

0.759

0.9

0.012

15

0.750

0.23

0.031

20

0.727

0.23

0.032

25

0.704

0.20

0.028

30

0.684

0.21

0.031

35

0.663

0.25

0.038

40

0.638

0.29

0.045

45

0.609

0.26

0.043

50

0.583

0.36

0.062

55

0.547

0.47

0.086

60

0.500

0.62

0.124

65

0.438

0.78

0.178

70

0.360

   
Tableau: 1  - Table de mortalité
Remarque: Suive une génération réelle d'individus tout au long de son existence ou sur une période de temps déterminée est appelée"analyse longitudinale" par contraste avec "l'analyse transervsale", qui consiste à étudier les caractéristiques d'une population à un moment donné.. Le tableau ci-dessus est donc un exemple d'analyse longitudinale.

Choisissons au hasard dans ce tableau le nom d'un enfant inconnu dans la liste des naissances de l'année 1900. La grande question lors de cette naissance était: combien d'années vivra-t-il? Aujourd'hui, nous sommes en mesure de répondre rétroactivement à cette question, tout au moins en évoquant des probabilités, car nous connaissons la table de mortalité de cette cohorte.

Si la seule information dont nous disposons aujourd'hui à propose de cet enfant est le fait qu'il est né en 1900, nous pouvons déclarer que la probabilité qu'il ait été encore vivant à l'âge de 5 ans est égale à 0.772, à l'âge de 50 ans de 0.583... Autrement dit que la probabilité pour qu'il soit mort avant 5 ans est égale à 0.228.

Si nous désignons aujourd'hui un individu inconnu sur la liste de ceux qui ont été incorporés au cours de l'année 1920 à l'âge de 20 ans, nous pouvons de même calculer les probabilités des diverses durées de sa vie, mais nous avons une information supplémentaire: il était encore vivant à 20 ans, il a évité les risques de mort avant cet âge. La probabilité qu'il atteigne alors l'âge de 50 ans est devenue:

equation   (3)

Donc la probabilité pour une personne d'âge a d'être en vie à l'âge a+1 est égal à:

equation   (4)

La probabilité pour une personne d'âge a de décéder entre l'âge a et a+n est logiquement donnée par:

equation   (5)

Ainsi à chaque âge nous pouvons donner la loi de la variable "durée encore à vivre". Cette loi peut être résumée en indiquant son espérance (cf. chapitre de Statistiques). Un calcul immédiat permet d'en donner la valeur à chaque âge en fonction de la table de mortalité.

Ce résultat peut être passionnant pour un historien, mais il donner une réponse à une question posée il y a longtemps et depuis oubliée. Ce qui nous intéresse est le présent. Cet enfant qui vient de naître, quelle est son espérance de vie? Pour répondre, il faudrait connaître la table de mortalité de sa génération, or le don de prémonition n'existe pas. L'attitude probabiliste permet de contourner cette difficulté à condition de bien préciser les hypothèses sous-jacentes.

Ainsi, pour répondre à la question: quelle est l'espérance de vie des nouveaux nés de 1990, nous faisons alors l'hypothèse, tout à fait gratuite, qu'ils rencontreront à chaque âge, à l'avenir, les conditions qu'ont rencontrées en 1990 les individus de ces âges: en l'an 2000 ils subiront la même mortalité que celle subie en 1990 par ceux qui sont nés en 1980. Bien sûr, personne n'imagine que la réalité sera conforme à cette hypothèse, mais le calcul qu'elle permet fournit une image synthétique des conditions actuelles de la lutte contre la mort.

C'est cette hypothèse qui fait que l'espérance de vie rajeunit parfois les vieux (leur espérance de vie ayant tendance à augmenter au fur et à mesure qu'ils deviennent plus âgés grâce aux progrès de la science...).

Prenons pour le calcul de l'espérance de vie, la table de mortalité pour les hommes en Suisse en 1983-1993:

Âge
n

Survivants
equation

Espérance de vie
E(a)

Âge
n

Survivants
equation

Espérance de vie
E
(a)

0

1

73.68823

55

0.90224

22.81093

1

0.99246

73.24806

56

0.89581

21.97466

2

0.99183

72.29459

57

0.88875

21.14922

3

0.99148

71.32011

58

0.88099

20.33551

4

0.99117

70.34241

59

0.87247

19.53409

5

0.9909

69.36158

60

0.86312

18.7457

6

0.99066

68.37838

61

0.85288

17.97077

7

0.99044

67.39357

62

0.84169

17.20969

8

0.99022

66.40855

63

0.82948

16.46301

9

0.99001

65.42263

64

0.81618

15.73128

10

0.98971

64.44246

65

0.80174

15.01462

11

0.9896

63.44963

66

0.78609

14.31354

12

0.98938

62.46373

67

0.76918

13.62821

13

0.98915

61.47826

68

0.75096

12.95887

14

0.98889

60.49442

69

0.73138

12.30579

15

0.9886

59.51217

70

0.7104

11.66921

16

0.98823

58.53445

71

0.68798

11.04949

17

0.9877

57.56586

72

0.66409

10.44699

18

0.98692

56.61136

73

0.63873

9.861773

19

0.98581

55.6751

74

0.6119

9.294182

20

0.98439

54.75541

75

0.58362

8.744543

21

0.98285

53.84121

76

0.55393

8.21324

22

0.98131

52.9257

77

0.52291

7.700465

23

0.97975

52.00997

78

0.49066

7.206599

24

0.97815

51.09505

79

0.45733

6.731813

25

0.97653

50.17981

80

0.42309

6.276608

26

0.9749

49.26371

81

0.38819

5.840903

27

0.97328

48.34571

82

0.35288

5.425357

28

0.97166

47.42631

83

0.31748

5.030301

29

0.97007

46.50405

84

0.28234

4.656372

30

0.9685

45.57943

85

0.24785

4.304337

31

0.96694

44.65297

86

0.21446

3.974494

32

0.96541

43.72373

87

0.18263

3.667196

33

0.96388

42.79314

88

0.15281

3.382828

34

0.96236

41.86073

89

0.12546

3.120277

35

0.96082

40.92782

90

0.10091

2.879397

36

0.95927

39.99395

91

0.07942

2.658524

37

0.95768

39.06035

92

0.06111

2.455081

38

0.95604

38.12736

93

0.04593

2.266492

39

0.95434

37.19528

94

0.03373

2.086273

40

0.95257

36.26439

95

0.02414

1.915079

41

0.95071

35.33534

96

0.0168

1.751786

42

0.94874

34.40871

97

0.01134

1.595238

43

0.94665

33.48468

98

0.00739

1.447903

44

0.94441

32.5641

99

0.00464

1.306034

45

0.94201

31.64706

100

0.00279

1.172043

46

0.93942

30.73431

101

0.0016

1.04375

47

0.93662

29.82619

102

0.00087

0.91954

48

0.93356

28.92396

103

0.00045

0.777778

49

0.93023

28.0275

104

0.00021

0.666667

50

0.92659

27.1376

105

0.00009

0.555556

51

0.92259

26.25526

106

0.00004

0.25

52

0.91821

25.3805

107

0.00001

0

53

0.91338

24.51471

108

0

 

54

0.90808

23.65779

     
Tableau: 2  - Table de mortalité en Suisse en 1983-1993

Donc la courbe représentative, appelée "l'ordre des vivants" est:

equation
  (6)

Voyons comment calculer l'espérance de vie. Pour cela considérons un homme en vie lors de son a-ème anniversaire. Le nombre d'années qui lui reste à vivre est une variable aléatoire dont nous pouvons calculer l'espérance mathématique (cf. chapitre de Probabilités). En négligeant les fractions d'années, cette espérance peut s'écrire:

equation   (7)

Si a est pris comme étant égal à zéro, les démographes parlent de EDVN (espérance de vie à la naissance).

Voici pour information l'augmentation de l'espérance de vie chez les hommes (source: Institut National Français d'Études Démographiques) depuis 1996 à 2006:

1996

74.1

1997

74.5

1998

74.8

1999

75.0

2000

75.3

2001

75.5

2002

75.7

2003

75.9

2004

76.7

2005

76.8

2006

77.2

Tableau: 3  - Augmentation de l'espérance de vie à la naissance

Nous pouvons donc observer que l'espérance de vie augment d'un peu plus d'un an tous les quatre ans depuis plus de 50 ans (et jusqu'à quand...)

equation

equation
Source: Wikipédia   (8)

Pour faire un enfant, il faut être deux certes les démographes le savent. Mais cette double source de chacun des nouveaux nés leur pose de tels problèmes de description et d'analyse de la fécondité qu'ils préfèrent en général l'ignorer. Leur attitude est justifiée par le fait que seule la conception nécessite l'intervention de deux acteurs. Au moment de la naissance, la mère agit seule. Or la démographie ne s'intéresse pas aux conceptions, inaccessibles à l'observation, mais seulement aux naissances.

Nous avons vu comment nous pouvons suivre un ensemble d'hommes ou de femmes nés une année donnée et enregistrer les décès successifs, ce qui permet d'établir la table de mortalité de cette cohorte. De même, nous pouvons noter les effectifs des enfants auxquels ils donnent naissance année après année. Nous obtenons ainsi la "table de fécondité".

Il suffit de suivre une cohorte de femmes de 15 jusqu'à 50 ans pour avoir une description complète de son comportement procréateur. Les données fournies par l'état civil permettent de calculer chaque année le nombre des enfants auxquels ont donné naissance les femmes de cette cohorte, regroupées par âge ou par groupes d'âge. En divisant par le taux des femmes survivants à cet âges, nous obtenons le "taux de fécondité" equation.

Si nous additionnons l'ensemble de ces taux, nous obtenons le nombre d'enfant qu'auraient eu, en moyenne, les femmes de cette cohorte si leur mortalité avait été nulle. Tel n'a évidemment pas été le cas. Pour caractériser la façon dont elles ont assuré le renouvellement de leur génération, il faut additionner les nombres réels moyens de naissances, produits du taux equation par le taux de survie equation.

L'ensemble de ces données est présentés dans une table de fécondité dont voici deux exemples où equation est le nombre d'effectif de naissances chez les femmes survivants à cette tranche d'âge et où equation est le nombre de naissances de 1'000 femmes de cette tranche d'âge.

Femmes françaises nées vers 1830:

Âge
n

Taux de survie
equation

Effectifs naissances
equation

Taux de fécondité
equation

15

0.672

91

135

20

0.645

464

720

25

0.616

589

955

30

0.587

475

810

35

0.558

328

565

40

0.528

153

290

Total

1

2'100

3'475

Tableau: 4  - Table de fécondité en France en 1830

Par exemple, sur 1'000 petites filles nées en 1830, 645 on atteint l'âge de 20 ans et ont eu 464 enfants entre 20 et 25 ans. L'intensité de la fécondité est mesurée par le nombre de naissances qu'auraient eu 1000 femmes de cet âge:

equation   (9)

Et la moyenne des naissances:

Âge
n

Survivantes

Effectifs naissances
equation

15

672

91

20

645

464

25

616

589

30

587

475

35

558

328

40

528

153

Total

 

2'100

Tableau: 5  - Moyenne des naissances en 1830

Nous pouvons observer qu'en 1830, de 20 à 30 ans les femmes donnaient naissance en moyenne à:

equation   (10)

ce chiffre étant assimilé par le grand public aux "taux de fécondité" (donc attention à ne pas confondre avec equation).

Pour faire le calcul sur l'ensemble de tous les âges il suffit de prendre le rapport du nombre d'enfants sur le nombre initial de femmes. Cela donne mondialement des chiffres indiqués dans la carte ci-dessous:

equation
Source: Wikipédia   (11)

RENOUVELLEMENT DE LA POPULATION

La question essentielle pour un ensemble humain en renouvellement permanent en raison des flux d'entrées et de sorties que sont les naissances et les décès est: notre effectif est-il en décroissance ou en croissance?

La table de natalité féminine permet de réponde, grâce au rapport du nombre de garçons à la naissance sur le nombre de filles. Ainsi, en ce début du 21ème siècle: il naît en moyenne 105 garçons pour 100 filles dans le monde. Ainsi, la proportion des filles et donc de:

equation   (12)

Vers quarante ans (49 en France selon l'INED), la prépondérance s'inverse et le nombre de femmes l'emporte généralement sur le nombre d'hommes, malgré de notables disparités régionales.

equation
Source: Wikipédia   (13)

equation

La table de fécondité de 1830 montre donc qu'en moyenne une femme de la cohorte de 1830 a produit:

equation

fille. Soit une augmentation que nous noterons k (en analogie avec le modèle exponentiel que nous verrons plus loin) de 3%. A tort, certains politiciens avancent la valeur (scolaire) 2.1 comme étant le taux de fécondité... qu'il faut pour assurer le renouvellement des générations ce qui n'est donc pas tout à fait exact.

L'effectif féminin était donc en accroissement. Donc la population pouvait assurer son renouvellement (tant le rapport est supérieur à 1).

Le nombre ainsi obtenu est le "taux net de reproduction". Ce taux est donc normalement constitué par le rapport entre le nombre de filles mises au monde par cent femmes, rapport corrigé par la mortalité prévue entre la naissance de ces filles et l'âge moyen à la reproduction, car une partie des filles n'atteindra pas l'âge de la reproduction, étant donné les décès survenus parmi elles entre leur naissance et leur âge à la maternité. L'âge moyen à la reproduction est donné par l'âge moyen des mères à la naissance.


page suivante : 2. Modèles des populations